Bayesian Statistics

Level: leicht
Mine Çetinkaya-Rundel; David Banks; Colin Rundel; Merlise A Clyde

This course describes Bayesian statistics, in which one's inferences about parameters or hypotheses are updated as evidence accumulates. You will learn to use Bayes’ rule to transform prior probabilities into posterior probabilities, and be introduced to the underlying theory and perspective of the Bayesian paradigm. The course will apply Bayesian methods to several practical problems, to show end-to-end Bayesian analyses that move from framing the question to building models to eliciting prior probabilities to implementing in R (free statistical software) the final posterior distribution. Additionally, the course will introduce credible regions, Bayesian comparisons of means and proportions, Bayesian regression and inference using multiple models, and discussion of Bayesian prediction.

Universität: Duke University
Plattform: Coursera
Wiederholung: flexible
Sprache: English
Disziplin: Ökonomik
Teilnahme: Kostenlos
Zertifikat: 71,00 EUR
Aufwand pro Woche: 5,0 h
Schlagwörter Satz von Bayes , A-posteriori-Wahrscheinlichkeit , A-priori-Wahrscheinlichkeit , Wahrscheinlichkeit , Wahrscheinlichkeitsverteilung , R , Statistik